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Introduction

This document is not an “API” description per se for the various calls but it should describe fairly well how easy it is to use it.  The following model description will therefore be a step by step “how-to” guide on producing an operational FLC, introducing objects and classes as we go along.

I believe this model is the simplest possible object oriented FL model.  The purpose indeed was to create a granular FL object which could be easily interconnected into a network of FLC. Such network can then be optimised externally with genetic algorithms.
Background
This document is specific to this “Simple FLC v3” set of classes.  It assumes some basic knowledge of the jargon commonly used in Fuzzy Logic.  Some reading references are available on the Fuzzy Logic page on the ForeTrade site, including the following resources:

1.  “Fuzzy Control,” Kevin M. Passino and Stephen Yurkovich, Addison Wesley Longman, Menlo Park, CA, 1998 (later published by Prentice-Hall). http://eewww.eng.ohio-state.edu/~passino/FCbook.pdf
2. “Fuzzy Logic: a Practical Approach,” McNeill, Martin and Ellen Thro., 1994 Academic Press Professional.                                   http://www.fuzzysys.com/books/FLLib/FUZZYPDF/FUZZYLOG.PDF 

3. Seattle Robotics “practical” tutorial on FL:
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html
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Fig1: FLC Architecture

Top object: the FLC

FLC, as its name implies, is the Fuzzy Logic Controller itself.  In order to work, the FLC will need to be created, and have its 3 major components defined: FS (Fuzzy Sets), VS (Variable Sets) and RS (Rule Set).  For simplicity and compactness, the FLC uses dynamic arrays in the form of pointers.  The array sizes are also defined.

CFuzzySet* FS;

// Fuzzy Sets


CFLVariable* FLV;

// Variable Set


CFLRule* FLRS;

// Rule Set


int m_nNumFS;

// Number of Fuzzy Sets


int m_nNumVars;

// Number of Variables


int m_nNumRules;

// Number of Rules

Fuzzy Set (FS)

Without going into details a fuzzy set represents an object’s or variable’s attribute (e.g. Size) itself made a set of several fuzzy states, like “High, Average, and Low”.  A FLC can hold many different fuzzy sets for different variables in different contexts or situations.  In order to simplify the setup of a FLC, a number of predefined Fuzzy Sets are included.   They can obviously be edited to suit particular requirements.
Variable Set (VS)

A variable set represents a collection of variables to be used in the FLC.  In many cases, the FLC will only have 2 inputs and 1 output, but the model can handle more inputs (MISO).  The design allows for that already even if we will only describe the most common 2-input model here.  One could obviously envisage implementations of more complex controllers with multiple outputs (MIMO), but it should hopefully not be necessary for a FuSM.
When a variable is created either as an input or an output, it originally has no fuzzy set attached.  It is therefore interesting to create many fuzzy sets, try associating a fuzzy set with a variable, then another until one finds the one most appropriate for the problem at hand.
We already have a view of our approach, i.e. after creating an empty FLC (step 1), then creating a number of fuzzy sets (step 2), as well as a variable set (step 3), we associate a fuzzy set to each variable (step 4).  This last operation can be done over and over, i.e. we can associate then dissociate fuzzy sets to variable set, allowing testing different configurations very easily.

Rule Set (RS)
A rule set represents the collection of rules in the FLC. A rule follows the same format as in crisp logic, i.e. IF Premise THEN Consequent, with Premise being made of logical assertions associated by Boolean operators.  In this implementation, each component (Antecedent) is called a Premise, and the Consequent can only be attached to the Output variable.  This makes our rules look like:

IF Var_1 IS High AND Var_2 IS Low THEN Output IS Average
The 1st premise (Var_1 IS High) obviously requires a Variable and its associated Fuzzy Set. This is why the FLC will have to be defined in a specific order: FS -> VS -> RS.  To be exact, the RS actually requires the VS and the FS attached (i.e. contained) to each Variable. 
In order to facilitate the building of a FLC, a number of predefined rule sets are included in the design.  Those default rule sets make up complete rule bases.  They can obviously be edited to suit particular requirements.

It must be noted that even if any logical rule can be created, it is always recommended to have a complete “AND” rule set in order to occupy the input space completely.
Life and scope of the FLC object

We’ve approached the subject already.  The current example implies instantiating a new FLC along with the dialog application itself.  It first has no FS, no VS and no RS. Any such FLC object can obviously be created and destroyed at will, providing possible existing FS, VS or RS have also been deleted.
In this client application (dialog based), the object is created on the heap, along with the dialog:


FLC = new CFLC;
// instantiate a new FL 'empty' controller

A default name is generated internally when instantiating a new FLC (“FLC_nn” where nn is the FLC number).  The maximum number of FL controllers is set in the DLL according to users’ rights (2 for the downloadable demo version). The FLC name can be edited.
The FLC object is here destroyed in the dialog destructor:

delete FLC;
In case the FLC already has its FS, VS or RS created, it should be reset prior to being destroyed.

FLC->Reset();
Defining the FLC major components
As described briefly above, the main FLC components (FS, VS, and RS) need to be fully defined to be operational.  The dialog based implementation not only creates them but also defines them as per the Seattle Robotics tutorial.  Sceptics will be able to verify that calculations return the same results. 

In our quest to have a simple highly replicable model, we have also coded 3 additional steps in our client application, which will be a very significant time saver later while offering increased versatility, which we describe now:
Defining a FLC Model
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As mentioned before, the library allows for any sort of MISO model, yet we find it simpler to keep a 2-input 1-output model, each having the same number of fuzzy states.  We thought it could be confusing to build a model whereby for instance Variable1 is High (from a 3-state fuzzy set), and Variable2 is “High” or “Very High” (from a 5-state fuzzy set).  In the current version, we recommend using a “square” model, i.e. 3x3 or 5x5.  It is not a limitation of the model, but a choice to “keep it simple” for scalability and performance.
The FLC Model is now also recorded in the object itself in the latest version.
Defining a Fuzzy Set Model

The library includes 6 predefined fuzzy sets
 for the 3x3 and the 5x5 FLC models.  
For instance a 3-state (or 5-state) fuzzy set can be defined instantly as “Regular” and will have 3 (or 5) “ready-made” fuzzy states (i.e. membership functions) defined:
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Future versions may offer more default models.  Next picture represents a “Regular” 3-state Fuzzy Set.  Please always check the VC++ header file and/or the Fuzzy Sets available spreadsheets (FS3.xls and FS5.xls) on the ForeTrade web site.
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We can see above a relatively equally spaced Fuzzy Set with a balanced overlap between states: 

· a “Low” state (blue membership function), 
· an “Avg” state (orange membership function) 
· and a “High” state (green membership function)

Another example is the following fuzzy set where the “Avg” state is a little more constrained (more decisive model):
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The available predefined models for both 3-state and 5-state fuzzy sets are listed in a spreadsheet to download from the web site.
In the client application, we assume the same default fuzzy model for both variables.  It is obviously not a prerequisite.  We shall come back to this point in the next section “Defining a Fuzzy Set”.
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Defining a Rule Set Model

Along the same vein, the library allows building a default rule set instantly from a list of 5 predefined rule bases, according to decisiveness and balance. “V1 controls V2” (and its opposite counterpart) are typical of error and error-dot fuzzy control systems.  It is for instance the one used in the Seattle Robotics tutorial.
A Rule Set spreadsheet available on the site gives detailed settings for all predefined rule sets.  Let’s just take a quick look at this first one:
[image: image11.jpg]


We have Variable 1 (horizontal) with 3 possible states here coded 1 to 3, and Variable 2 (vertical) also with 3 states. The top left cell in that matrix reads as follows:
IF V1 = 1 AND V2=1 THEN OUTPUT=1

Wrapping up the introduction

We’ve seen a new object called FLC which represents the Fuzzy Logic Controller.  When instantiating, it is empty, and needs its 3 major components FS, VS, and RS to be set up to be fully operational.
We’ve also seen that default settings can speed the creation of a FLC with using a predefined fuzzy set and a predefined rule set. Obviously, they can be edited.  We’re going to study that now.
Creating Fuzzy Sets
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The client application has a “Load FS” button which does it all.  Let’s have a quick look at what it actually does.
We indeed need as a 1st step consisting of initialising a number of Fuzzy Sets for our FLC.  This call will be even more useful in the Genetic Algorithm version of the FLC as it will allow testing many different fuzzy sets concurrently. To generate
 3 empty fuzzy sets, the function call is as simple as:

FLC->InitFuzzySets(3);

This function InitFuzzySets(int) returns a value:


-3
if the number of fuzzy sets to create is negative


-2
if fuzzy sets could not be created (memory allocation error)


-1
if fuzzy sets have already been created for this fuzzy set


0
OK

Please always check latest DLL version for error codes.
If return code is OK, one can then use a pointer to the Fuzzy Set array.  Array boundaries won’t always be checked in the client application, but the number of fuzzy sets can be retrieved with:


int nfs = FLC->GetNumFuzzySets();

A pointer to the Fuzzy Set Array can be retrieved with:

CFuzzySet* pFSet = FLC->FSArray();

Typically, we then initialise the newly created fuzzy sets:

for (int i = 0; i < nNumFuzzySets; i++)


{


pFSet[i].InitFuzzySet(nNumFuzzyStates,0);




pFSet[i].DefineFuzzySet(m_nDefaultFuzzySetModel); 


}
Note1: InitFuzzySet( int , int ) returns a value (same convention):


-3
if the number of states to be created is negative


-2
if fuzzy states could not be created (memory allocation error)


-1
if fuzzy states have already been created for this fuzzy set


0
OK

(Please always check latest DLL version for error codes)
Each Fuzzy Set above has been initialised with the same number of fuzzy states (membership functions) and we provide the default shapes for all fuzzy states according to a model. For simplicity, this is the same default model in this example, but any default model can be used here.  In the sample application, the “m_nDefaultFuzzySetModel” variable is set when selecting which default fuzzy set (see “Defining a Fuzzy Set Model” above)
In practice, the 1st parameter “nNumFuzzyStates” is the number of fuzzy states, often 3, 5 or 7. The 2nd parameter represents the tag
 to be attached to each state.  Predefined tags will be loaded from the DLL: “Low”, “Med” and “High” in this instance.
What we’ve seen in this section is how easy it is to create and define any number of Fuzzy Sets in just a few function calls.
Defining Fuzzy States
We’ve just used “DefineFuzzySet” to load a default Fuzzy Set with all its membership functions etc.  Fuzzy states are nothing but a way to quantify the attributes that will be applied to a variable, in other words, how high is “high” for instance.  We’ll see later on that we will attach a Fuzzy Set to a Variable, so that we can easily assess the degree of membership in each fuzzy state.
To better understand how a Fuzzy State is defined, let’s have a look at our _MFshape class, part of the CFLMembershipFunction class where Fuzzy States are defined.  We have chosen to only code triangular shapes in this version, but we could easily add Gaussian shapes too.
class _MFshape
//
ShoulderRight (0) -\, Triangle (1) /-\, ShoulderLeft (2) /-



int
nType;

//
The points do characterize the shape of the membership function

//
This set-up can also accommodate other shapes like Gaussian

//
More points can be added to identify more shapes

//
like trapezoids. dCenter is used for shoulder shapes

double dPoint1;


double dPoint2;


double dPoint3;


double dPoint4;


double dCenter; 
In current implementations (triangular shapes), only 3 shapes are used: 0 (ShoulderRight), 1 (Triangle) and 2 (ShoulderLeft).  These shapes only need dPoint1, dPoint2, and dCenter.  dPoint3 and dPoint4 are left for future use (possible other shapes). dCenter is required to avoid state saturation for shoulder shapes.
We now better understand the settings (bottom of page 5) for our predefined 3-state Fuzzy Sets.  The file header also gives shapes for 5-state Fuzzy Sets.
The first thing a FLC needs to do is to fuzzify the inputs, in other words, pre-process the input value for each variable, against the different Fuzzy States of the Fuzzy Set in question.  That’s what is called calculating the degree of membership for each state. Since we will generally use a default fuzzy model, we don’t need to delve into details, so such calculations have been moved to Annex 1.
Defining a Variable Set (VS)
The Variable Set is the 2nd main component of the FLC.  In the client application, this step is as simple as clicking on the “Load FS” button.  We assume a FS has been created and defined.
Of course, it is essential to first check whether such FS has been defined, and if VS has not already been defined:

if (FLC->boolVS()) return;


if (!FLC->boolFS()) return;

Like for Fuzzy Sets, a number of variables, here 3, are created in one call:


FLC->InitVarSet(3);

InitVarSet(int) returns a value:

-3
if the number of variables to be created is negative


-2
if fuzzy variables could not be created (memory allocation error)


-1
if fuzzy variables have already been created for this FLC


0
OK

If OK, we can then retrieve a pointer to the Variables array, the same way we did for the Fuzzy Sets array:

CFLVariable* pVars = FLC->VarArray();


CFuzzySet* pFSet = FLC->FSArray();

int nv = FLC->GetNumVars();
pVars will now be used to initialise the different variables, with an individual Fuzzy Set:


pVars[0].LoadFuzzySet(pFSet[0],TRUE); // Input1 in the FLC


pVars[1].LoadFuzzySet(pFSet[1],TRUE); // Input2

pVars[2].LoadFuzzySet(pFSet[2],FALSE);// Output

Technically, LoadFuzzySet does a little more than copying a Fuzzy Set into the Variable description. It also attributes a premise number to each (Variable <-> Fuzzy State).  It will be described in more details later in this document.
For the time being, that is it! Only one call to create variables and one call in a loop to load a Fuzzy Set for each variable!
Defining a Rule Set (RS)

The Rule Set is the 3rd and last important component in the FLC.  The format has changed very slightly from FLC v2. We need to check that a Variable Set (VS) has been loaded in the FLC, and that each variable has been associated to a Fuzzy Set.  At the same time, we calculate the number of rules for a complete rule set.  We also check a rule set has not been loaded yet.

int ret = FLC->DetermineRuleSetSize();


if (FLC->boolRS()) return;

Memory for the entire Rule Set is created using this call:

FLC->InitRuleSet();

InitRuleSet() returns a value:

-3
if the number of rules to be created is negative


-2
if rules could not be created (memory allocation error)


-1
if rules have already been created for this FLC


0
OK

We can also call: 
FLC->InitRuleSet(NumRules)
;
If OK, one can then retrieve a pointer to the Rule Set:
CFLRule * pFLR = FLC->RuleArray();
Each rule has to now be formatted.  In our example, all rules are made of 2 premises like:
IF Var_1 IS High AND Var_2 IS Low THEN Output IS Average
Please note that the current rule model is specifically MISO (Multi Input Single Output), i.e. a rule only has one consequent.  Allowing for MIMO rules should not be a problem to expand.  In order to cater for a future update, the rule allocation is therefore separated from the previous call:

FLC->AllocateRuleSpace(); 
Loading the default Rule Set

Typically, after the empty Rule Set is created, we need to fill each rule with a composition of premises associated to a consequent (1 output).  One could keep the rule set in the client application like it was defined in the previous version of our FLC.  For simplicity though, it is easier to just load a rule set as per the model first selected.

The previous implementation syntax is provided in Appendix 4.
Deleting FLC components

FS, VS and RS can be deleted at all times.  The FS is not even needed once the variables have a fuzzy set loaded.

Deleting a FS requires a single call to:


FLC->ClearFuzzySets();

The same logic applies to VS, but deleting VS must be followed by deletion of the RS:

FLC->ClearVarSet();


FLC->ClearRuleSet();
The Rule Set can be deleted separately.
Modifying FLC Components

The dialog implementation relies on passing pointers to child dialogs where the appropriate object is modified.  For instance, in the case of modifying Fuzzy Sets:


if (!FLC->boolFS())return;

CFuzzySet *FS = FLC->FSArray();


static CFuzzySetDesign s_FSdlg;


s_FSdlg.nNumFS = FLC->GetNumFuzzySets();


s_FSdlg.FS = FS;


s_FSdlg.DoModal();

The same logic is used for VS and RS.  There is a small variation however with VS.  Building a RS should be prevented if the FS is removed from a variable it was attached to.  This can be done for instance as follows:


for (int i=0; i<FLC->GetNumVars(); i++)



if (!VS[i].HasFS())



{




FLC->ClearVarSet();




return;



}

ClearVarSet() will reset the boolVS flag which is used when a RS is created.
Note: the dialog implementation does not allow changing the number of fuzzy states. It is possible to manually drop the FS attached to the variable, and attach another FS with more (or less fuzzy states).  In practice, assuming GA optimisation techniques, the FLC individual and/or the FLC component (VS) would be killed (depending on the level or levels the GA is applied) and regenerated.
Implementation details

The UI could admittedly be more comprehensive, but the current implementation only serves as a container for the FLC classes.  This hierarchical model can easily be stored in a database. Save/restore functionalities have not been coded here for better readability.

Each FLC is uniquely identified by a number, which can be a database index.  It is easy to visualise database relationships between FLC and its components FS, VS, and RS.  One must however note that at a higher level (FuSM) the same Variables may have to be used in several locations. In other instances, Variables may have different Fuzzy Sets, hence only be semantically equivalent.  This will be detailed in a separate document.

FLC Calculations

The current implementation, once all 3 components are defined in the FLC, consists in a single procedure called on clicking “Calculate sFLC Output”:
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double FuzzyController(double ArrInput)
The input array contains here 2 values for Var1 and Var2.  The function then simply returns the fuzzy output.  In the final application, templates or polymorphic functions may be needed. In most simple cases, the FLC will use either 2 or 3 inputs for a single output.
Procedure details

In the previous version, all calculations were done in the client application.  Details for such calculations are still available in Appendix 5.  A lot has been done to port and rationalise the code into the DLL.  There is still a lot of display code in the client application, left for tutorial purposes, which will not be described in this document.

On the contrary, we’re going to focus on the 4 core calls. They could all be grouped into fewer calls, possibly only one, but we here leave the 4 calls to eventually provide more flexibility.
Step 1: Evaluating all premises

We here use an array of input values (VarValue) and we are going to scan through all existing premises to evaluate them.  Not only it helps evaluating rules later on, but we also could decide to correct premises according to new criteria here.


FLC->EvaluateAllPremises(VarValue);

Step 2: Inferencing all rules

FLC->InferenceRules();

We here want to go through the rule base and calculate how “strong” they are.  Again, one could decide to cap rule strength, to use thresholds or else to maybe limit the number of rules to take to the next step.

Step 3: Generating fuzzy outputs


FLC->GenerateFuzzyOutputs();
Now starts the real calculations, but the output remains “fuzzy”. In other words, we only calculate rules in terms of the fuzzy set of the output’s variable.

Step 4: Defuzzifying the output.


FLC->Defuzzify(0);

We now turn the output into a “crisp” value.  In the current version we only use the “root-sum-squares” method (or fuzzy centroid) which is the most balanced method.  Only a value of 0 is accepted here.

The sFLC client application does a fairly good job at describing each step in detail (see picture on next page).
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Let’s assume our sFLC is fully set up (“Define” and “Construct”), values have been given for the 2 input variables (-0.25 and 0.25), and we have just clicked on the “Calculate sFLC Output” button.

We can follow the 4 steps described earlier with individual outputs in different dialog panes.  We confirm we here get the same output as per the original Seattle Robotics tutorial: Q.E.D. (
Here is the same sample calculation taken from the Seattle Robotics tutorial(http://www.seattlerobotics.org/encoder/mar98/fuz/fl_part6.html).

We shall note that inputs are normalised.  The -1.0F for Variable 1 for a maximum of -4 is -25% to -1, and for Variable 2: +2.5 to 10 is +25%  (to compare with previous snapshot).
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Var_0 = -0.25 (normalised to [-1; +1])

Var_1 = -.25 (normalised to [-1; +1])

Output:
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Output = -0.635 (using Fuzzy Centroïd method)

Conclusion

This simple FLC model is way more versatile than it may look at first.  We can design more than the client application does provide, yet we may also just leave it that way.  In most cases, we will indeed only use a DISO model (dual input single output) and we will more than compensate this apparently simplistic setup with the capacity to now interconnect our FL controllers very easily.
We have to interface FLC for TradeStation, then we shall describe in our next article how to derive this top FLC class to build more than an network of FLC, i.e. a Fuzzy State Machine.

Appendix 1

Fuzzy Boolean Operators

//
Fuzzy operators

double Or(double x, double y)

{
if (x>y) return x; else return y;
}
// MAX

double And(double x, double y)

{
if (x>y) return y; else return x;
}
// MIN

double Not(double x)

{
return (1-x);
}

They can also be written as macros using the #define statement.

Appendix 2

Associating a Fuzzy Set to a Variable
int CFLVariable::LoadFuzzySet(CFuzzySet &fs, BOOL bIsInput)

{


if (FS != NULL) return -1;

m_nNumStates = fs.NumStates();


m_bIsInput = bIsInput;


FS = new CFuzzySet(m_nNumStates);


if (FS == 0) return -2;


FS->SetFSname(fs.GetFSName());
// copy FS name


CFLMembershipFunction * pMFo = fs.FuzzyStateArray();


CFLMembershipFunction * pMFd = FS->FuzzyStateArray();

// Fuzzy Sets are made of MFs, which do not have a Premise number 

// defined until they are associated to a variable

// which is going to be done now


for (int i=0;i<m_nNumStates;i++)


{
// premises are numbered sequentially in order to suit 

// the original rule set 


pMFd[i].SetPremiseNumber(m_nNumStates *(m_nVarNumber-1)+ i+1);


pMFd[i].ResetDOM();


_MFshape s = pMFo[i].MFshape();


pMFd[i].SetMFshape(s);


}


m_bHasFS = TRUE;


return 0;

}

The important aspect to keep in mind here is that variable will keep their premise numbering determined by Variable Number and the number of Fuzzy States.

It is not a requirement per se, but if new premise numbers are created the Rule Set would also have to be always regenerated since reference to previous premise number would be obsolete.

Appendix 3
Calculating DOM (Degree of Membership)

It is very easy to calculate DOM (Degree of Membership) for a variable of value x in a particular Fuzzy State, using the following functions applicable to triangular shapes:

double ShoulderLeft(double x, double t1, double t2) ‘ /-

{


if (t1==t2) return 0.0;


if (x<=t1)
return 0.0;


if (x>=t2)
return 1.0;


return ((x-t1)/(t2-t1));

}

double ShoulderRight(double x, double t1, double t2) ‘ -\

{


if (t1==t2) return 0.0;


if (x<=t1)
return 1.0;


if (x>=t2)
return 0.0;


return ((x-t2)/(t1-t2));

}

double Triangle(double x, double t1, double t2) ‘ /\
{


if (x<=t1)
return 0.0;


if (x>=t2)
return 0.0;


if (x<=(t1+t2)/2)
return ShoulderLeft(x,t1,(t1+t2)/2);


else


return ShoulderRight(x,(t1+t2)/2,t2);

}

double Triangle(double x, double t1, double t2, double center)

{


if (x<=t1)
return 0.0;


if (x>=t2)
return 0.0;


if (x<=center)
return ShoulderLeft(x,t1,center);


else


return ShoulderRight(x,center,t2);

}
These functions do not require the value x to be normalised, but it is a recommended convention nonetheless.  Please note that the centre used in the Triangle functions is the actual x-coordinate for the triangle peak (DOM = 1).

Example:

pFSet is the same pointer to the Fuzzy Set array as described above.

First, we create an empty shape.


_MFshape s;


s.Reset();

We can then retrieve a pointer to the Fuzzy State array.

CFLMembershipFunction *MF0 = pFSet[0].FuzzyStateArray();

The implementation code is a tutorial on how to use the FLC classes.  One should of course check the boundaries of that array.  MF0 can only contain 3 elements, for the 3 possible states, as defined.

// Set 1st Fuzzy Set


s.nType = 0; // ShoulderRight -\
"Neg" Center set to -1 (min)


s.dPoint1 = -0.5;


s.dPoint2 = 0;


s.dCenter = -1;


s.strName = "FS1-Neg";


MF0[0].SetMFshape(s);


s.nType = 1; // Triangle /\ "Null" Center = triangle center = 0


s.dPoint1 = -0.5;


s.dPoint2 = 0.5;


s.dCenter = 0.0;


s.strName = "FS1-Null";


MF0[1].SetMFshape(s);


s.nType = 2; // ShoulderLeft /- "Positive" Center set to +1 (max)


s.dPoint1 = 0.0;


s.dPoint2 = 0.5;


s.dCenter = 1;


s.strName = "FS1-Pos";


MF0[2].SetMFshape(s);
Again, such simple shape description will easily allow for optimisations wit Genetic Algorithms.  You will however notice that shouldered shapes do need to have their “dCenter” at the boundary of the range i.e. -1 or +1.  This is required in order to be able to get crisp values out of the FLC when needed.

Appendix 4

The dialog implementation includes a function: 
LoadFLRuleSet(CFLRule *rs, int NumRules) 

Each rule is defined internally using the following format:


ret = rs[0].SetPremise(0,1);// 1st variable (0) is "Negative" (1)


if (ret!=0) return -1;


ret = rs[0].SetBoolOp(0,AND);
// AND


if (ret!=0) return -1;

ret = rs[0].SetPremise(1,4);
// 2nd variable is "Negative"


if (ret!=0) return -1;


ret = rs[0].SetBoolOp(1,NOTHING);


if (ret!=0) return -1;


rs[i].SetConsequent(7);

// Output is "Negative"

*rs being the Rule Set array, rs[0] is the first rule being defined above. The function SetPremise defines each premise in each rule. Here, the 1st premise (premise 0) is Premise No1, and the 2nd premise (premise 1) is Premise No4.  The Boolean operator is an AND.  The fuzzy AND operator is a Min using the common Min-Max convention.

The above rule is equivalent to:

IF Premise1 AND Premise4 THEN “Premise7” 
Technically a consequent is not a premise, but this is a design shortcut taken to keep the overall FL model compact.  In the FL literature, Premise1 and Premise4 are antecedents.

In the dialog application, the default implementation is:

Premise1 is: 
Var_0 IS Negative

Premise4 is:
Var_1 IS Negative

And the consequent (“Premise7”) is:
Output IS Negative

Appendix 5 – Fuzzy Calculations
Again, one has to verify that components are loaded.


if (!FLC->boolFS()) 
return 0.00;


if (!FLC->boolVS())
return 0.00;

In this case, the fuzzy output is set to 0 if the FLC setup is not complete.  It may not be appropriate in some cases. Other conventions are possible.  For instance, as the fuzzy output ranges from -1 to +1, the error return value could be -2.

At this stage, all premises can be calculated, even if the Rule Set is not yet available.


CFLVariable * pVars = FLC->VarArray();


pVars[0].CalcPremises(Value1);


pVars[1].CalcPremises(Value2);

Each DOM for each Fuzzy State is now calculated for both inputs.

A Rule Set is now needed to evaluate all predicates.  This simple FLC model actually makes these calculations relatively straightforward.

We have seen that all premises are numbered, that all DOMs are calculated, and that the Rule Set is formatted in such a way that rule premises are indexed with premise numbers.

As seen earlier, Rules are interpreted as follows:

IF Premise1 AND Premise4 THEN “Premise7” 
Now, that DOM is known for both input premises, one just has to apply a Fuzzy Boolean AND to them.  This is done in the following code snippet:

double *PredicateValue = new double[NumRules]; // 9 rules 

int
*Consequent = new int[NumRules];

int np = FLC->RuleArray()->NumPremises();
// 2 input premises

int nv = FLC->GetNumVars();

double *RuleEstimate = new double[np];

for (int i=0 ; i<NumRules ; i++)

{


for (int n=0 ; n<np ; n++)


{


int *pP = pFLR[i].pPremise();


RuleEstimate[n] = 0.0;


for (int v=0 ; v<nv ; v++)


{



CFLMembershipFunction * pMF =

pVars[v].FuzzySet()->FuzzyStateArray();



if (pVars[v].IsInput())




for (int k=0 ; k<pVars[v].NumStates() ; k++)




if (pP[n] == pMF[k].PremiseNumber())






RuleEstimate[n] = pMF[k].GetDOM();



}


}

In this 1st part of the code, rules are scanned one by one.  For each rule, we scan variables (inputs only) to retrieve the DOM using the premise number.  The RuleEstimate array stores each and every DOM on which we can now apply the fuzzy Boolean indicator.
double value = 0.0;

for (int p=0 ; p<np ; p++)

{


int o = pFLR[i].Operation(p);


switch (o)


{


case AND:



value += And(RuleEstimate[p],RuleEstimate[p+1]);



break;


case OR:



value += Or(RuleEstimate[p],RuleEstimate[p+1]);



break;


case NOT:



value += Not(RuleEstimate[p]);



break;


case NOTHING:



// Do nothing



// End predicate evaluation


default:





;


}

}

PredicateValue[i] = value;

Consequent[i] = pFLR[i].RuleConsequent();
// will be used for defuzz

}

delete [] RuleEstimate;
// no longer needed

RuleEstimate = NULL;
The rule predicates are now all known.

Please note that this design allows for more than 2 inputs, but this type of coding implies than premises are logically assessed sequentially.

Calculating the Output Strength

It is now possible to calculate the output strength by scanning the Rule Set and analysing which rules contribute to each fuzzy state.  At the same time, we “defuzzify” the Output.

The method here used is the Fuzzy Centroid (also called Root-Sum-Squares), which is one of the most balanced method.  For more information, please check the Background Reading section at the beginning of this document.

int OutVarNo = FLC->GetNumVars() -1;
//  = 2

int NumOutputStates = pVars[OutVarNo].FuzzySet()->NumStates();

// After inferencing:

// OutputStrength stores the "strength" in each output fuzzy state.

double *OutputStrength = new double[NumOutputStates];

for (int i=0;i<NumOutputStates;i++) OutputStrength[i] = 0.0;

// pVars[2] is the output in this example

// Premises have been numbered incrementally

int FirstOutputState = 

pVars[OutVarNo].FuzzySet()->

FuzzyStateElt(0).PremiseNumber();

int LastOutputState = 

pVars[OutVarNo].FuzzySet()->

FuzzyStateElt(NumOutputStates-1).PremiseNumber();

double denom_out = 0.0;

for (int i=FirstOutputState;i<=LastOutputState;i++)

{
// Scanning through rule set to evaluate OutputStrength 

//for each output fuzzy state


double sumsq = 0.0;


for (int j=0;j<NumRules;j++)



if (Consequent[j] == i)
// Sum squares




sumsq += PredicateValue[j] * PredicateValue[j];


int k = i-FirstOutputState;


OutputStrength[k] = sqrt(sumsq);


denom_out += OutputStrength[k];
// root-sum-squares

}

In the above code snippet, one first retrieves the variable index for the output variable (2), then we just have to scan rules again to extract how each contributes to a particular fuzzy state for the Output variable.

At the same time, we prepare for the Fuzzy Centroid calculation by computing the Root-Sum-Squares.

Now, we only have to calculate the crisp value for the output:

// Calculate the Fuzzy Centroid of the area (cf tutorial for details)

double num_out = 0.0;

for (int i=0;i<NumOutputStates;i++)

{


double dCenter;


dCenter = pVars[2].FuzzySet()->FuzzyStateElt(i).GetShapeCenter();


num_out += dCenter * OutputStrength[i];

}

if (denom_out == 0.0)
OutputValue = 0.0;

else



OutputValue = num_out / denom_out;

This is where the dCenter comes into play for each Output state.  This guarantees that a FLC can also compute crisp logic.

The rest of the code is the usual garbage collection…







� Settings for the 6 predefined 3-state fuzzy sets as per FLC_DLL header (version 3.0) :��const int NumFS3 = 6;


const double FS3[NumFS3][3][4] =


	{


		0.,-0.5,0.,-1.,	1.,-0.5,0.5,0.,	2.,0.,0.5,1.,


		0.,-0.25,0.,1.,	1.,-0.25,0.25,0.,	2.,0.,0.5,1.,


		0.,-0.25,0.25,-1,	1.,-0.25,0.25,0.,	2.,-0.25,0.25,1.,


		0.,-0.75,0.,-1.,	1.,-0.75,0.75,0.,	2.,0,0.75,1.,	


		0.,-0.75,0.,-1.,	1.,-0.5,0.5,0.,	2.,0,0.75,1.,


		0.,-1.,-0.25,-1.,	1.,-0.5,0.5,0.,	2.,0.25,1.,1.


	};


const string strStates3[3][3] = 


			{"Low", "Med", "High",


			"Neg.", "Null", "Pos.",


			"Small", "Avg.", "High"};





const string FS3n[NumFS3] = �{"Regular","Decisive","Very decisive","Averaging","Dampened","Separated"	};





� Each Fuzzy Set is given a unique number. This will facilitate associations to variables later on.





� const string strStates3[3][3] = 


	{"Low", "Med", "High", "Neg.", "Null", "Pos.", "Small", "Avg.", "High"};





� If the number of rules in the Rule Set is needed, an accessor member function is available, like for all private members of all FLC classes:	NumRules = FLC->GetRuleSetSize();
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